
Deal Documentation

@orsinium

Mar 24, 2023

GETTING STARTED

1 1

Python Module Index 61

Index 63

i

ii

CHAPTER

ONE

LOGO.PNG

A Python library for design by contract (DbC) and checking values, exceptions, and side-effects. In a nutshell, deal
empowers you to write bug-free code. By adding a few decorators to your code, you get for free tests, static analysis,
formal verification, and much more. Read intro to get started.

1.1 Features

• Classic DbC: precondition, postcondition, invariant.

• Tracking exceptions and side-effects.

• Property-based testing.

• Static checker.

• Integration with pytest, flake8, sphinx, and hypothesis.

• Type annotations support.

• External validators support.

• Contracts for importing modules.

• Can be enabled or disabled on production.

• Colorless: annotate only what you want. Hence, easy integration into an existing project.

• Colorful: syntax highlighting for every piece of code in every command.

• Memory leaks detection: deal makes sure that pure functions don’t leave unexpected objects in the memory.

• DRY: test discovery, error messages generation.

• Partial execution: linter executes contracts to statically check possible values.

• Formal verification: prove that your code works for all input (or find out when it doesn’t).

• Zero-dependency runtime: there are some dependencies for analysis tools, but nothing of it is required on the
production.

• Fast: each code change is benchmarked and profiled.

1

https://cloud.drone.io/life4/deal
https://pypi.python.org/pypi/deal
https://pypi.python.org/pypi/deal
https://en.wikipedia.org/wiki/Design_by_contract
https://deal.readthedocs.io/basic/intro.html
https://deal.readthedocs.io/basic/values.html
https://deal.readthedocs.io/basic/exceptions.html
https://deal.readthedocs.io/basic/tests.html
https://deal.readthedocs.io/basic/linter.html
https://deal.readthedocs.io/details/contracts.html#external-validators
https://deal.readthedocs.io/details/module_load.html
https://deal.readthedocs.io/basic/runtime.html
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://deal.readthedocs.io/basic/tests.html#memory-leaks
https://deal.readthedocs.io/basic/verification.html

Deal Documentation

• Reliable: the library has 100% test coverage, partially verified, and runs on production by multiple companies
since 2018.

1.2 Deal in 30 seconds

the result is always non-negative
@deal.post(lambda result: result >= 0)
the function has no side-effects
@deal.pure
def count(items: List[str], item: str) -> int:

return items.count(item)

generate test function
test_count = deal.cases(count)

Now we can:

• Run python3 -m deal lint or flake8 to statically check errors.

• Run python3 -m deal test or pytest to generate and run tests.

• Just use the function in the project and check errors in runtime.

Read more in the documentation.

1.3 Installation

python3 -m pip install --user 'deal[all]'

1.4 Contributing

Contributions are welcome! A few ideas what you can contribute:

• Add new checks for the linter.

• Improve documentation.

• Add more tests.

• Improve performance.

• Found a bug? Fix it!

• Made an article about deal? Great! Let’s add it into the README.md.

• Don’t have time to code? No worries! Just tell your friends and subscribers about the project. More users ->
more contributors -> more cool features.

To run tests locally, all you need is task. Run task all to run all code formatters, linters, and tests.

Thank you :heart:

2 Chapter 1.

https://deal.readthedocs.io/
http://taskfile.dev/

Deal Documentation

1.4.1 Intro

About contracts

Deal is a powerful library for writing and testing contracts.

1. Testing is for checking exact values. You assume that for some exact input values and exact state the function
returns an exact known value. For example, sum(2, 3) == 5.

2. Typing is for checking sets of values. You state that the function accepts only some class of values and returns
a class of values. For example, sum(float, float) -> float.

3. Property-based testing is for checking conditions for a set of values. It’s like typing but it actually checks not
classes of values but exact values from the class. For example, if property is “sum of 2 positive numbers is also
positive”, property-based tests will take random positive numbers, call the function and check that result is also
positive.

4. Contracts are a powerful mix of typing and property-based testing.

1. Like type annotations, contracts are part of the function signature, and can be checked statically.

2. Like properties, contacts allow you to specify any conditions, and the framework will take care of choosing
exact values and checking call results.

So, think about it as typing on steroids. However, Deal doesn’t try to replace type annotations (mypy isn’t perfect but
it’s hard to do better) but instead empowers them, says more about possible values and their properties.

Read Contract-Driven Development section if you want to know more why contracts are cool.

Open-world assumption

Deal can tell you if something goes wrong but can’t tell you if something can’t go wrong. It is known as open-world
assumption. For example, if the function explicitly raises an exception or does it almost on every input, Deal will tell
you about it. However, if the function does it somewhere deep inside of call stack and only on one value from million,
chances that it will be caught are small. So, if you say “this function can raise ValueError” but Deal doesn’t see it
anywhere, it will trust you and don’t argue about it. Deal assumes that the developer is smart and can see something
that the framework can’t.

Writing contracts

The next 3 parts of the documentation tell how to check different kinds of things that can happen when you call a
function:

1. Values – arguments of the function and return values. That’s all what pure functional languages have but Python
is different.

2. Exceptions – be aware of where your code execution can stop.

3. Side-effects – when function mutates global values, does request to database or remote server, or even imports a
module.

1.4. Contributing 3

https://en.wikipedia.org/wiki/Open-world_assumption
https://en.wikipedia.org/wiki/Open-world_assumption

Deal Documentation

Checking contracts

There are a multiple ways to validate contracts:

1. Runtime. Call the functions, do usual tests, just play around with the application, deploy it to staging, and Deal
will check contracts in runtime. Of course, you can disable contracts on production.

2. Tests. Deal is easily integrates with PyTest or any other testing framework. It does property-based testing for
functions with contracts. Also, deal has test CLI command to find and run all pure functions in the project.

3. Linter. The most amazing part of Deal. It statically checks constant values in the code, does values inference,
contracts partial execution, propagates exceptions and side-effects. Deal has lint CLI command for it and
flake8 integration.

4. Experimental: Formal verification. The most powerful but limited idea in the whole project. Deal can turn
your code into mathematical expressions and verify its correctness.

5. Experimental: CrossHair. Third-party verifier-driven fuzzer, something between deal’s testing and verification.

Dive deeper

It’s not “advanced usage”, there is nothing advanced or difficult. It’s about writing better contracts or saving a bit of
time. Not important but very useful. So, don’t be afraid to dive into this section!

1. More on writing contracts gives you additional tools to reuse and simplify contracts.

2. Contracts for modules allow you to control what happens at the module load (import) time.

3. Dispatch is a way to combine multiple implementations for a function into one based on preconditions.

4. Documentation provides information on generating documentation for functions with contracts (using Sphinx).

5. Stubs is a way to store some contracts in a JSON file instead of the source code. It can be helpful for third-party
libraries. Some stubs already inside Deal.

6. More on testing provides information on finding memory leaks and tweaking tests generation.

7. Recipes is the place to learn more about best practices of using contracts.

1.4.2 Contract-Driven Development

Let’s take for example an incredibly simple code and imagine that it’s incredibly complicated logic.

def cat(left, right):
"""Concatenate two given strings.
"""
return left + right

Tests

How can we be sure this code works? No, it’s not obvious. Remember the rules of the game, we have an incredibly
complicated realization. So, we can’t say it works or not while we haven’t tested it.

def test_cat():
result = cat(left='abc', right='def')
assert result == 'abcdef'

Now, run pytest:

4 Chapter 1.

https://docs.pytest.org/en/latest/

Deal Documentation

pytest cat.py

It passes. So, our code works. Right?

Table tests

Wait, but what about corner cases? What if one string is empty? What if both strings are empty? What if we have only
one character in both strings? We need check more values and this is where table driven tests will save our time. In
pytest, we can use @pytest.mark.parametrize to make such tables.

import pytest

@pytest.mark.parametrize('left, right, expected', [
('a', 'b', 'ab'),
('', '', ''),
('', 'b', 'b'),
('a', '', 'a'),
('text', 'check', 'textcheck'),

])
def test_cat(left, right, expected):

result = cat(left=left, right=right)
assert result == expected

Properties

Table tests can be enormously long, and for every test case, we have to manually calculate the expected result. For
complicated code, it’s a lot of work. Can we do it better and think and write less? Yes, we can instead of expected
result talk about expected properties of the result. The big difference is the result is different for different input values,
but properties always the same. The coolest thing is in most cases you already know result properties, it is the business
requirements, and your code is no more than the implementation of these requirements.

So, what are the properties of our function?

1. The result string starts with the first given string.

2. The result string ends with the second given string.

3. Result string has the length equal to the sum of lengths of given strings.

Now, we can check these properties for the result instead of checking particular values.

@pytest.mark.parametrize('left, right', [
('a', 'b'),
('', ''),
('', 'b'),
('a', ''),
('text', 'check'),

])
def test_cat(left, right):

result = cat(left=left, right=right)
assert result.startswith(left)
assert result.endswith(right)
assert len(result) == len(left) + len(right)

1.4. Contributing 5

https://dave.cheney.net/2019/05/07/prefer-table-driven-tests
https://docs.pytest.org/en/latest/parametrize.html#pytest-mark-parametrize

Deal Documentation

Hypothesis

We’ve tested a few corner cases but not all of them. What about Unicode strings? What if one string is Unicode, but
another one isn’t? What about spaces? What if we have a string termination symbol somewhere? What if both strings
contain only digits (the place where JS always surprises)? It’s so hard to find examples for all possible cases where
something can go wrong. In theory, you even can’t say that it works while you haven’t checked all possible values
(that impossible even for our simple function). So, instead of trying to figure out all possible nightly values we can ask
the machine to do so. This is where the property-based testing comes in. In Python, we have a great tool hypothesis
that can generate test examples for us:

import hypothesis
from hypothesis import strategies

@hypothesis.given(left=strategies.text(), right=strategies.text())
def test_cat(left, right):

result = cat(left=left, right=right)
assert result.startswith(left)
assert result.endswith(right)
assert len(result) == len(left) + len(right)

Type annotations

Another one cool thing in Python we have to talk about before moving further is type annotations:

def cat(left: str, right: str) -> str:
return left + right

Type annotations aren’t perfect and can be too complicated. However, what is most important is now humans and
machines know much more about your code. You can run mypy and check that you haven’t made type errors. And
the thing is it’s not only about catching type errors. Now we can use hypothesis-auto wrapper around hypothe-
sis. It will infer parameters types and explain names and types of parameters to Hypothesis. So, instead of writ-
ing hypothesis.given(left=strategies.text(), right=strategies.text()) we can just say
hypothesis_auto.auto_pytest(cat).

import hypothesis_auto

@hypothesis_auto.auto_pytest(cat)
def test_cat(test_case):

result = test_case()
left = test_case.parameters.kwargs['left']
right = test_case.parameters.kwargs['right']
assert result.startswith(left)
assert result.endswith(right)
assert len(result) == len(left) + len(right)

It looks longer because now parameters are placed inside the long name test_case.parameters.kwargs but
the most important thing here is we don’t talk about function inputs at all, the machine does everything. The test isn’t
about any values of the function anymore but only about the function properties.

6 Chapter 1.

https://dev.to/jdsteinhauser/intro-to-property-based-testing-2cj8
https://hypothesis.readthedocs.io/en/latest/
https://dev.to/dstarner/using-pythons-type-annotations-4cfe
https://github.com/python/mypy
https://timothycrosley.github.io/hypothesis-auto/

Deal Documentation

Contracts

Can we make it even simpler? Not really. The implementation can produce some values, and the machine can infer
some properties of the result. However, someone else must say which properties are good and expected, and which are
not. However, there is something else about our properties that we can do better. At this stage we have type annotations
and, to be honest, they are just kind of properties. Annotations say “the result is a text”, and our test properties clarify
the length of the result, it’s prefix and suffix. However, the difference is type annotations are the part of the function
itself. It gives some benefits:

1. The machine can check statically, without the actual running of the code.

2. The human can see types (think “possible values set”) for arguments and the result.

And Deal can make the same for function properties:

import deal

@deal.ensure(lambda left, right, result: result.startswith(left))
@deal.ensure(lambda left, right, result: result.endswith(right))
@deal.ensure(lambda left, right, result: len(result) == len(left) + len(right))
def cat(left: str, right: str) -> str:

return left + right

Or using short signatures:

import deal

@deal.ensure(lambda _: _.result.startswith(_.left))
@deal.ensure(lambda _: _.result.endswith(_.right))
@deal.ensure(lambda _: len(_.result) == len(_.left) + len(_.right))
def cat(left: str, right: str) -> str:

return left + right

Now, it’s not just properties, but contracts. They can be checked in the runtime, simplify tests, tell humans about the
function behavior. And tests for this implementation are trivial:

test_cat = deal.cases(cat)

Contracts for machines

The most exciting thing is deal can check contracts statically, like mypy checks annotations. However, contracts can
be any code while types are standardized and limited. Although the machine can’t check everything (yet), it can catch
some trivial cases. For example:

@deal.post(lambda result: 0 <= result <= 1)
def sin(x):

return 2

And when we run deal linter on this code, we see contract violation error:

flake8 --show-source sin.py
sin.py:6:5: DEL011: post contract error

return 2
^

1.4. Contributing 7

https://en.wikipedia.org/wiki/Design_by_contract
https://docs.python.org/3/library/typing.html

Deal Documentation

1.4.3 References

This page provides a quick navigation by the documentation in case if you’re looking for something specific.

Decorators

decorator reference documentation
@deal.chain deal.chain More on writing contracts / deal.chain
@deal.dispatch deal.dispatch Dispatch
@deal.ensure deal.ensure Values / deal.ensure
@deal.example deal.example Documentation / deal.example
@deal.has deal.has Side-effects
@deal.inherit deal.inherit More on writing contracts / deal.inherit
@deal.inv deal.inv Values / deal.inv
@deal.post deal.post Values / deal.post
@deal.pre deal.pre Values / deal.pre
@deal.pure deal.pure –
@deal.raises deal.raises Exceptions / deal.raises
@deal.reason deal.reason Exceptions / deal.reason
@deal.safe deal.safe Exceptions / deal.safe

Functions

decorator reference documentation
deal.activate deal.activate Contracts for modules
deal.autodoc deal.autodoc Documentation / Sphinx autodoc
deal.cases deal.cases Tests
deal.catch deal.catch Documentation / deal.example
deal.disable deal.disable Runtime / Contracts on production
deal.enable deal.enable Runtime / Contracts on production
deal.implies deal.implies –
deal.module_load deal.module_load Contracts for modules
deal.reset deal.reset Runtime / Contracts on production

Exceptions

decorator reference documentation
deal.ContractError deal.ContractError Values / Exceptions
deal.ExampleContractError deal.ExampleContractError –
deal.InvContractError deal.InvContractError Values / Exceptions
deal.MarkerError deal.MarkerError –
deal.NoMatchError deal.NoMatchError Dispatch
deal.OfflineContractError deal.OfflineContractError –
deal.PostContractError deal.PostContractError Values / Exceptions
deal.PreContractError deal.PreContractError Values / Exceptions
deal.RaisesContractError deal.RaisesContractError –
deal.ReasonContractError deal.ReasonContractError –
deal.SilentContractError deal.SilentContractError –

8 Chapter 1.

Deal Documentation

CLI commands

command reference documentation
decorate decorate More on writing contracts / Generating contracts
lint lint Linter / Built-in CLI command
memtest memtest More on testing / Finding memory leaks
prove prove Formal verification
stub stub Stubs
test test Tests / CLI

Integrations

tool github integration docs
atheris google/atheris More on testing / Fuzzing
flake8 PyCQA/flake8 Linter / flake8
hypothesis HypothesisWorks/hypothesis More on testing / Custom strategies
mypy python/mypy More on writing contracts / Typing
pytest pytest-dev/pytest Tests
sphinx sphinx-doc/sphinx Documentation / Sphinx autodoc

Articles

• Make tests a part of your app

Projects integrating deal

• CrossHair

• flake8-functions-names

1.4.4 Values

deal.pre

Precondition – condition that must be true before the function is executed.

@deal.pre(lambda *args: all(arg > 0 for arg in args))
def sum_positive(*args):

return sum(args)

sum_positive(1, 2, 3, 4)
10

sum_positive(1, 2, -3, 4)
PreContractError: expected all(arg > 0 for arg in args) (where args=(1, 2, -3, 4))

1.4. Contributing 9

https://github.com/google/atheris
https://github.com/PyCQA/flake8
https://github.com/HypothesisWorks/hypothesis
https://github.com/python/mypy
https://github.com/pytest-dev/pytest
https://github.com/sphinx-doc/sphinx
https://dev.to/sobolevn/make-tests-a-part-of-your-app-8nm
https://github.com/pschanely/CrossHair
https://github.com/Melevir/flake8-functions-names
https://en.wikipedia.org/wiki/Precondition

Deal Documentation

deal.post

Postcondition – condition that must be true after the function was executed. Raises PostContractError other-
wise.

@deal.post(lambda x: x > 0)
def always_positive_sum(*args):

return sum(args)

always_positive_sum(2, -3, 4)
3

always_positive_sum(2, -3, -4)
PostContractError:

Post-condition allows you to make additional constraints about a function result. Use type annotations to limit types
of results and post-conditions to limit possible values inside given types.

deal.ensure

Ensure is a postcondition that accepts not only result, but also function arguments. Must be true after function executed.

@deal.ensure(lambda x, result: x != result)
def double(x):

return x * 2

double(2)
4

double(0)
PostContractError: expected x != result (where result=0, x=0)

Ensure is the shining star of property-based testing. It works perfect for P vs NP like problems. In other words, for
complex task when checking result correctness (even partial checking only for some cases) is much easier then the
calculation itself.

deal.inv

Invariant – condition that can be relied upon to be true during execution of a program.

Invariant check condition in the next cases:

1. Before class method execution.

2. After class method execution.

3. After some class attribute setting.

@deal.inv(lambda post: post.likes >= 0)
class Post:

likes = 0

post = Post()

post.likes = 10

(continues on next page)

10 Chapter 1.

https://en.wikipedia.org/wiki/Postcondition
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/Invariant

Deal Documentation

(continued from previous page)

post.likes = -10
InvContractError: expected post.likes >= 0

type(post)
deal.core.PostInvarianted

assert

Good old assert statement is also kind of a contract. It is good for checking intermediate state inside a function. Also,
it is similar to other contracts since deal mimics assert behavior: all contracts are disabled on production and raise
AssertionError in case of the contract violation. Also, deal linter checks assert statements to be True.

def do_something(a):
result = something_else(a)
assert result > 0
return another_thing(result)

Exceptions

Every contract type raises it’s own exception type, inherited from ContractError (which is inherited from built-in
AssertionError):

contract exception
pre PreContractError
post PostContractError
ensure PostContractError
inv InvContractError

Custom exception for any contract can be specified by exception argument:

@deal.pre(lambda role: role in ('user', 'admin'), exception=LookupError)
def change_role(role):

print(f'now you are {role}!')

change_role('superuser')
LookupError:

However, thumb-up rule is to avoid catching exceptions from contracts. Contracts aren’t part of business logic, but are
validation. Hence, a contract error means a business logic violation has occurred and execution should be stopped to
avoid doing something not predicted and even dangerous.

Chaining contracts

You can chain any contracts:

@deal.pre(lambda x: x > 0)
@deal.pre(lambda x: x < 10)
def f(x):

return x * 2

(continues on next page)

1.4. Contributing 11

https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/library/exceptions.html#AssertionError

Deal Documentation

(continued from previous page)

f(5)
10

f(-1)
PreContractError: expected x > 0 (where x=-1)

f(12)
PreContractError: expected x < 10 (where x=12)

@deal.post and @deal.ensure contracts are resolved from bottom to top. All other contracts are resolved from
top to bottom. This is because of how wrapping works: before calling function we go down the contracts list, and after
calling the function we go back up the call stack.

Generators and async functions

Contracts mostly support generators (yield) and async functions:

contract yield async
pre yes yes
post yes (checks every yielded value) yes
ensure yes (checks every yielded value) yes
inv partially (before execution) partially (before execution)

1.4.5 Exceptions

deal.raises

@deal.raises specifies which exceptions the function can raise.

@deal.raises(ZeroDivisionError)
def divide(*args):

return sum(args[:-1]) / args[-1]

divide(1, 2, 3, 6)
1.0

divide(1, 2, 3, 0)
ZeroDivisionError: division by zero

divide()
IndexError: tuple index out of range
The above exception was the direct cause of the following exception:
RaisesContractError:

@deal.raises() without exceptions specified means that function raises no exception.

12 Chapter 1.

Deal Documentation

deal.safe

@deal.safe is an alias for @deal.raises(). Wraps a function that never raises an exception.

deal.reason

Checks condition if exception was raised.

@deal.reason(ZeroDivisionError, lambda a, b: b == 0)
def divide(a, b):

return a / b

Motivation

Exceptions are the most implicit part of Python. Any code can raise any exception. None of the tools can say you
which exceptions can be raised in some function. However, sometimes you can infer it yourself and say it to other
people. And @deal.raises will remain you if function has raised something that you forgot to specify.

Also, it’s an important decorator for autotesting. Deal won’t fail tests for exceptions that were marked as allowed with
@deal.raises.

1.4.6 Side-effects

deal.has

@deal.has is a way to specify markers for a function. Markers are tags about kinds of side-effects which the
function has. For example:

@deal.has('stdout', 'database')
def say_hello(id: int) -> None:

user = get_user(id=id)
print(f'Hello, {user.name}')

You can use any markers you want, and Deal will check that if you call a function with some markers, they are specified
for the calling function as well. In the example above, print function has marker stdout, so it must be specified
in markers of say_hello as well.

Motivation

Every application has side-effects. It needs to store data, to communicate with users. However, every side-effect makes
testing and debugging much harder: it should be mocked, intercepted, cleaned after every test. The best solution is to
have functional core and imperative shell. So, the function above can be refactored to be pure:

import sys

now this is pure
@deal.has()
def make_hello(user) -> str:

return f'Hello, {user.name}'

and the main function takes care of all impure things
@deal.has('stdout', 'database')

(continues on next page)

1.4. Contributing 13

https://www.destroyallsoftware.com/screencasts/catalog/functional-core-imperative-shell

Deal Documentation

(continued from previous page)

def main(stream=sys.stdout):
...
user = get_user(id=id)
hello = make_hello(user=user)
print(hello, file=stream)

Built-in markers

Deal already know about some markers and will report if they are violated:

code marker allows
DEL041 global global and nonlocal
DEL042 import import
DEL043 io everything below
DEL044 – read read a file
DEL045 – write write into a file
DEL046 – stdout sys.stdout and print
DEL047 – stderr sys.stderr
DEL048 – network network communications, socket
DEL049 – stdin sys.stdin
DEL050 – syscall system calls: subprocess, os
DEL055 random functions from random module
DEL056 time accessing system time

Runtime

Some of the markers are checked at runtime:

• If any of io, network, or socket is specified, deal.has will allow network operations. Oth-
erwise, it will patch socket blocking all network requests. If the function tries to use the network,
OfflineContractError is raised.

• If any of io, print, or stdout is specified, deal.has will allow using stdout. Otherwise, it will patch
sys.stdout. If the function tries to use it, SilentContractError is raised.

• If any of io or stdout is specified, deal.has will do the same as for stdout marker but for sys.stderr

@deal.has()
def f():

print('hello')

f()
SilentContractError:

Other markers aren’t checked in runtime yet but only checked by the linter.

14 Chapter 1.

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr

Deal Documentation

Markers are properties

Markers and exceptions are properties of a function and don’t depend on conditions. That means if a function only
sometimes in some conditions does io operation, the function has io marker regardless of possibility of hitting this
condition branch. For example:

import deal

def run_job(job_name: str, silent: bool):
if not silent:

print('job started')
...

@deal.has() # must have 'stdout' here.
def main():

job_name = 'hello'
run_job(job_name, silent=True)
return 0

If we run linter on the code above, it will fail with “DEL046 missed marker (stdout)” message. main function calls
run_job with silent=True, so print will not be called when calling main. However, run_job function has
an implicit stdout marker, and main calls this function so it must have this marker as well.

1.4.7 Runtime

Call the functions, do usual tests, just play around with the application, deploy it to staging, and Deal will check
contracts in runtime. On contract violation, deal raises an exception. In general, you shouldn’t ever catch these
exceptions because contracts must be never violated. Contract violation means a bug.

1.4. Contributing 15

Deal Documentation

Contracts on production

If you run Python with -O option, all contracts will be disabled. Under the hood, it’s controlled by the __debug__
variable:

The built-in variable __debug__ is True under normal circumstances, False when optimization is re-
quested (command line option -O). Source: Python documentation

If needed, you can also explicitly enable or disable contracts in runtime:

disable all contracts
deal.disable()

enable all contracts
deal.enable()

restore the default behavior
(enabled if `__debug__` is True, disabled otherwise)
deal.reset()

It’s easy to mess up with the contracts’ state when you change it manually. To help you a bit, deal will emit a
RuntimeWarning if you accidentally enable contracts in production or disable them in tests. If you’ve got this warning
and you know what you’re doing, pass warn=False to skip this check.

16 Chapter 1.

https://docs.python.org/3/reference/simple_stmts.html#assert
https://docs.python.org/3/library/warnings.html

Deal Documentation

Permamently disable contracts

When contracts are disabled, functions are still get wrapped in case you want to enable contracts again, after all
functions already initialized. That means, even if you disable contracts, there is still a small overhead in runtime that
might be critical in for some applications. To avoid it and tell deal to disable contracts permanently, call deal.
disable(permament=True). There is what you should know:

1. If you permamently disable the contracts, you cannot enable them back anymore. Trying to do so will raise
RuntimeError.

2. This flag is checked only when functions are decorated, so you need to call it before importing any decorated
functions.

3. Functions that were decorated before you permamently disabled contracts will behave in the same way as if you
just called deal.disable(), with a quick check of the state in runtime on each call.

Colors

If no error message or custom exception specified for a contract, deal will show contract source code and passed param-
eters as the exception message. By default, deal highlights syntax for this source code. If your terminal doesn’t support
colors (which is possible on CI), you can specify NO_COLOR environment variable to disable syntax highlighting:

export NO_COLOR=1

See no-color.org for more details.

1.4.8 Tests

Deal can automatically test your functions. First of all, your function has to be prepared:

1. All function arguments are type-annotated.

2. All exceptions that function can raise are specified in deal.raises.

3. All preconditions are specified with deal.pre.

@deal.raises(ZeroDivisionError)
@deal.pre(lambda a, b: a >= 0 and b >= 0)
def div(a: int, b: int) -> float:

return a / b

Then you can use deal.cases to generate test cases for the function. This is a polimorphic object that can be used
in many ways.

Here is the shortest way to create a test:

test_div = deal.cases(div)

It is enough for pytest to find and run the test. Or you can run it manually by just calling it: test_div().

However, it is not scalable. What if we want to use a pytest fixture? What if we need to prepare something before
running the test case? Or what if we want to check additional conditions? So, let’s make a proper test function:

type annotations below are optional
@deal.cases(div)
def test_div(case: deal.TestCase) -> None:

case()

1.4. Contributing 17

https://no-color.org/
https://docs.pytest.org/en/latest/

Deal Documentation

In this example, when we (or pytest) call test_div(), deal will generate test cases (using hypothesis) and run the
function body for every case. The test function itself decides when to execute the test case. Here case is an instance
of deal.TestCase class. This form works as expected with pytest fixtures if the test case is the first argument and
has the name case.

CLI

There is a CLI command named test. It extracts deal.pure and @deal.has() (without arguments) wrapped
functions and runs deal.cases powered tests for it.

python3 -m deal test project/*.py

The command is helpful when you don’t have tests for some pure functions yet but want to get an early feedback.

For every ran function, deal calculates and shows coverage. This is a helpful indication on how good deal was at
finding the correct input values.

18 Chapter 1.

https://hypothesis.readthedocs.io/en/latest/

Deal Documentation

Configuring

Specify samples count (50 by default):

deal.cases(div, count=20)

Explicitly specify arguments to pass into the function:

deal.cases(div, kwargs=dict(b=3))

See deal.cases API documentation and More on testing for details.

Practical example

The best case for Contract-Driven Development is when you have a clear business requirements for part of code. Write
these requirements as contracts, and then write a code that satisfy these requirements.

In this example, we will implement index_of function that returns index of the given element in the given list. Let’s
think about requirements:

1. Function accepts list of elements (let’s talk about list of integers), one element, and returns index.

2. Result is in range from zero to the length of the list.

3. Element by given index (result) is equal to the given element.

4. If there are more than one matching element in the list, we’ll return the first one.

5. If there is no matching elements, we’ll raise LookupError.

And now, let’s convert it from words into the code:

from typing import List, NoReturn
import deal

if you have more than 2-3 contracts,
consider moving them from decorators into separate variable
like this:
contract_for_index_of = deal.chain(

result is an index of items
deal.post(lambda result: result >= 0),
deal.ensure(lambda items, item, result: result < len(items)),
element at this position matches item
deal.ensure(

lambda items, item, result: items[result] == item,
message='invalid match',

),
element at this position is the first match
deal.ensure(

lambda items, item, result: not any(el == item for el in items[:result]),
message='not the first match',

),
LookupError will be raised if no elements found
deal.raises(LookupError),
deal.reason(LookupError, lambda items, item: item not in items),
no side-effects
deal.has(),

)

Now, we can write a code that satisfies our requirements:

1.4. Contributing 19

Deal Documentation

@contract_for_index_of
def index_of(items: List[int], item: int) -> int:

for index, el in enumerate(items):
if el == item:

return index
raise LookupError

And tests, after all, the easiest part. Let’s make it a little bit interesting and in the process show all valid samples:

test and make examples
@deal.cases(index_of, count=1000)
def test_div(case):

run test case
result = case()
if result is not NoReturn:

if no exceptions was raised, print the result
print(f"index of {case.kwargs['item']} in {case.kwargs['items']} is {result}")

1.4.9 Linter

Deal can do static checks for functions with contracts to catch trivial mistakes. Don’t expect it to find much. Static
analysis in dynamic language is hard but deal tries its best to help you. Add the linter on your CI and it will help you
to find bugs.

flake8

Most probably, you already use flake8, so this option should suit best for you. Deal has built-in flake8 plugin which
will be automatically discovered if you install flake8 and deal in the same environment.

python3 -m pip install --user flake8 deal
python3 -m flake8

Built-in CLI command

Another option is to use built-in CLI from deal: python3 -m deal lint. I has beautiful colored output by
default. Use --json option to get a compact JSON output. Pipe output into jq to beautify JSON.

Since this is ad-hoc solution, it has a bit more beautiful colored output.

20 Chapter 1.

http://flake8.pycqa.org
https://stedolan.github.io/jq/

Deal Documentation

1.4. Contributing 21

Deal Documentation

Codes

General:

Code Message
DEL001 do not use from deal import ..., use import deal instead
DEL002 ensure contract must have result arg

Contracts:

Code Message
DEL011 pre contract error
DEL012 post contract error
DEL013 example violates contract
DEL021 raises contract error
DEL031 assert error

Markers:

Code Message
DEL041 missed marker (global)
DEL042 missed marker (import)
DEL043 missed marker (io)
DEL044 missed marker (read)
DEL045 missed marker (write)
DEL046 missed marker (stdout)
DEL047 missed marker (stderr)
DEL048 missed marker (network)
DEL049 missed marker (stdin)
DEL050 missed marker (syscall)
DEL055 missed marker (random)
DEL056 missed marker (time)

Partial execution

To check pre and post contracts, linter can partially execute them. For example:

import deal

@deal.post(lambda r: r != 0)
def f():

return 0

Try to run linter against the code above:

$ python3 -m deal lint tmp.py
tmp.py

6:11 DEL012 post contract error (0)
return 0

Hence there are some rules to make your contracts linter-friendly:

• Avoid side-effects, even logging.

22 Chapter 1.

Deal Documentation

• Avoid external dependencies (functions and contants defined outside of the contract).

• Keep them as small as possible. If you have a few different things to check, make separate contracts.

Linter silently ignores contract if it cannot be executed.

1.4.10 Formal verification

Warning: This feature is experimental and always will be. The API is stable and verification is reliable but it
always will work only for some simple cases.

Deal has a built-in formal verifier. That means deal turns your code into a formal theorem and then proves that it is
formally correct (or finds a counter-example when it is not). Turning wild Python code into mathematical expressions
is hard, so application of the verifier is limited. Still, you should try it. It will work for only 1% of your code but when
it does work, it finds actual bugs.

python3 -m deal prove project/

How it works

Prerequisites for code to be verified:

• It is a function or @staticmethod.

• It is written on pure Python and calls only pure Python code.

• Every argument is type annotated.

• Even if everything above is satisfied, the function still can be skipped because a feature it uses is not supported
yet.

Below, we use the following terms:

• counter-example means a combination of input arguments that leads to theorem violation.

• given means that this is an axiom the theorem uses. Counter-example must satisfy to the given conditions.

• expected means that this is an assertion that theorem tries to break. Counter-example must violate at least one
expected condition.

How different components are interpreted:

• deal.pre is given.

• deal.post is expected.

• deal.pre for function called from this function is expected.

• deal.ensure is expected.

• deal.raises is expected to contain every exception the function can ever raise.

• assert is expected.

1.4. Contributing 23

Deal Documentation

Background

• 1936. Halting problem. Alan Turing proved that you cannot formally verify if a program will ever finish
execution. This is one of the most important theorems of formal verification.

• 1949. Alan Turing publishes the first ever proof of program correctness.

• 1967. Robert W. Floyd published “Assigning Meanings to Programs”, introducing the idea of program verifica-
tion using logical assertions.

• 1969. Hoare logic. Tony Hoare, based on the work of Floyd, introduced the idea of precondition, postcondition,
and loop invariant. What’s more important, he proved that this is all you need to formally verify correctness of
any program. The only thing you can’t verify this way is if the program will ever stop.

• 1986. Design by contract. Bertrand Meyer designed Eiffel programming language which introduced the idea
of Design by Contract (DbC). DbC is heavily based on Hoare Logic, but this time it turned from a purely
mathematical reasoning into an actual OOP language.

• 2009. Dafny. Microsoft Research releases a programming language that actually uses Hoare logic to formally
prove contracts.

• 2015. Z3. Microsoft Research opens the source code of the formal verifier used inside of Dafny and in a few
other places. Z3 provides bindings for many different programming languages, including Python.

• 2018. deal. We released a Python library that allows to specify contracts that can be validated in runtime. The
initial motivation to make another one DbC library is to provide decorator-based API (as opposed to a more
popular docstring-based approach), so users can benefit from syntax-highlighting, autocomplete, autoformatters
and other tooling.

• 2019. Deal gets a linter. It finds contract violations using static analysis.

• 2021. deal-solver. We released a tool that converts Python code (including deal contracts) into Z3 theorems that
can be formally verified.

Limitations

Since Python is a dynamically typed interpreted language and is not designed for formal verification, turning Python
code into mathematical expressions is very hard. To name a few limitations:

• There are some mutability bugs that cannot be detected by deal-solver because there is no conception of muta-
bility (and variables) in Z3.

• set cannot be converted into list because sets are infinite in Z3.

• Some formulas (like a ** x where x is a variable) take unreasonable amount of time to prove. To avoid
freezing to death, deal-solvers sets a timeout for every proof.

• In general, resolving OOP magic statically is hard. At the moment, deal-solver supports only built-in types and
validates only functions and static methods.

• A big chunk of the standard library is written in C. So, to support the whole standard library, we have to manually
rewrite every function implementation as a Z3 formula (because deal-solver can interpret only Python, not C).

• Verification of loops requires loop invariants. However, deal currently doesn’t have anything like this because
it’s not so helpful for other components of the project.

So, deal-solver is more proof-of-concept rather than something that will be a part of your day-to-day tooling.

24 Chapter 1.

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Hoare_logic
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Loop_invariant
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Bertrand_Meyer
https://en.wikipedia.org/wiki/Eiffel_programming_language
https://en.wikipedia.org/wiki/Dafny
https://en.wikipedia.org/wiki/Z3_Theorem_Prover
https://github.com/life4/deal
https://github.com/life4/deal-solver
https://en.wikipedia.org/wiki/Loop_invariant

Deal Documentation

Further reading

There are few additional links in case if you want to go down the rabbit hole and dig into some hardcore math:

• Engineering Trustworthy Software Systems (do not read this article on sci-hub if you respect paywalls and think
that knowledge should be available only for the science elite, piracy is wrong)

• Programming Z3

• Z3Py Guide

• A Tested Semantics for the Python Programming Language

• A Peek Inside SAT Solvers

1.4.11 CrossHair

Warning: CrossHair is an experimental tool and it runs your code. So, use it only with safe functions, don’t run
it on the code that may wipe out your system or do bank transactions.

CrossHair is a third-party tool for finding bugs in Python code with deal support. It is a verifier-driven fuzzer (also
known as “concolic testing”), something in between deal Tests and Formal verification. It calls the given function
multiple times but instead of actual values it passes special mocks, allowing it explore different execution branches.

Installation:

python3 -m pip install --user crosshair-tool

Usage:

python3 -m crosshair watch ./examples/div.py

Note: CrossHair is a third-party tool. We’re not responsible for bugs in this integration. Use CrossHair issue tracker
for all issues you encounter.

Further reading:

• CrossHair documentation

• Deal Support

• How Does It Work?

1.4.12 More on writing contracts

Generating contracts

The best way to get started with deal is to automatically generate some contracts using decorate CLI command:

python3 -m deal decorate my_project/

It will run Linter on your code and add some of the missed contracts. The rest of the contracts are still on you, though.
Also, you should carefully check the generated code for correctness, because deal may miss something.

The following contracts are supported by the command and will be added to your code:

1.4. Contributing 25

https://link.springer.com/book/10.1007/978-3-030-17601-3
https://sci-hub.se/10.1007/978-3-030-17601-3
http://theory.stanford.edu/~nikolaj/programmingz3.html
http://ericpony.github.io/z3py-tutorial/guide-examples.htm
http://cs.brown.edu/research/plt/dl/lambda-py/lambda-py.pdf
https://youtu.be/d76e4hV1iJY
https://github.com/pschanely/CrossHair
https://en.wikipedia.org/wiki/Concolic_testing
https://github.com/pschanely/CrossHair/issues
https://crosshair.readthedocs.io/en/latest/introduction.html
https://crosshair.readthedocs.io/en/latest/kinds_of_contracts.html#deal-support
https://crosshair.readthedocs.io/en/latest/how_does_it_work.html

Deal Documentation

• deal.has

• deal.raises

• deal.safe

Simplified signature

The main problem with contracts is that they have to duplicate the original function’s signature, including default
arguments. While it’s not a problem for small examples, things become more complicated when the signature grows.
In this case, you can specify a function that accepts only one _ argument, and deal will pass a container with arguments
of the function call to it, including default ones:

@deal.pre(lambda _: _.a + _.b > 0)
def f(a, b=1):

return a + b

f(1)
2

f(-2)
PreContractError: expected a + b > 0 (where a=-2, b=1)

deal.chain

The deal.chain decorator allows you to merge a few contracts together into one decorator. It can be used to store
contracts separately from the function:

contract_for_min = deal.chain(
deal.pre(lambda items: len(items) > 0),
deal.ensure(lambda items, result: result in items),

)

@contract_for_min
def min(items):

...

This allows you to reuse contracts among multiple functions. Also, it keeps the function signature cleaner, as multiple
decorators may make it a bit noisy.

deal.inherit

The deal.chain decorator makes a method to inherit contracts from the base class.

It can be applied to a separate method:

class Shape:
@deal.post(lambda r: r > 0)
def get_sides(self):

raise NotImplementedError

class Triangle(Shape):
@deal.inherit
def get_sides(self):

return 3

(continues on next page)

26 Chapter 1.

Deal Documentation

(continued from previous page)

triangle = Triangle()
triangle.get_sides()

Or to the whole class, so all contracts for all methods will be inherited:

@deal.inherit
class Line(Shape):

def get_sides(self):
return 2

line = Line()
line.get_sides()
PreContractError: expected r > 0 (where r=2)

If the class has multiple base classes, contracts from all of them will be inherited.

If the method already has other contracts or decorators, they will be preserved. Just make sure they all are specified
below @deal.inherit.

Typing

We encourage you to use type annotations, and so deal is fully type annotated and respects and empowers your type
annotations as well. At the same time, deal is very flexible about what can be a validator for a contract (functions,
short signatures, Marshmallow schemas etc), and so it cannot be properly described with type annotations. To solve
this issue, deal provides a custom plugin for mypy. The plugin checks types for validators. It does not execute
contracts.

The best way to configure mypy is using pyproject.toml:

[tool.mypy]
plugins = ["deal.mypy"]

Keep in mind that pyproject.toml is supported by mypy only starting from version 0.910. Check your installed
version by running mypy --version. If it is below 0.910, upgrade it by running python3 -m pip install
-U mypy.

Providing an error

You can provide the message argument for a contract, and this message will be used as the error message (and in
documentation):

@deal.pre(lambda x: x > 0, message='x must be positive')
def f(x):

return list(range(x))

f(-2)
PreContractError: x must be positive (where x=-2)

If a single contract includes multiple checks, it can return an error message instead of False, so that different failures
can be distinguished:

def contract(x):
if not isinstance(x, int):

(continues on next page)

1.4. Contributing 27

https://docs.python.org/3/library/typing.html
http://mypy-lang.org/

Deal Documentation

(continued from previous page)

return 'x must be int'
if x <= 0:

return 'x must be positive'
return True

@deal.pre(contract)
def f(x):

return list(range(x))

f('Aragorn')
PreContractError: x must be int (where x='Aragorn')

f(-2)
PreContractError: x must be positive (where x=-2)

External validators

Deal supports a lot of external validation libraries, like Marshmallow, WTForms, PyScheme etc. For example:

import deal
import marshmallow

class Schema(marshmallow.Schema):
name = marshmallow.fields.Str()

@deal.pre(Schema)
def func(name):

return name * 2

func('Chris')
'ChrisChris'

func(123)
PreContractError: [Error(message='Not a valid string.', field='name')] (where
→˓name=123)

See vaa documentation for details.

Performance

Deal tries to be as performant as possible, with the following goals in mind:

• If something can be done only once (in other words, cached) with a benefit to performance, it must be done only
once.

• Heavy operations must not be performed when decorator is just applied. Otherwise, it negatively affects the
import time for the project that uses deal.

• Simplicity must not be sacrificed for performance.

The outcome of this is that deal has some heavy operations. Namely, introspection of the wrapped function and the
validator. These operations are performed only once, when the function is called for the first time. The idea is similar
to how Just-In-Time compilation works in Julia: compile it only when you need it.

So, if you benchmark a function decorated with deal, you can either:

• Disable contracts using deal.disable;

28 Chapter 1.

https://github.com/life4/vaa
https://julialang.org/

Deal Documentation

• Call the function once in advance to trigger the caching;

• Or pre-cache contracts for a specific function using deal.introspection.init_all.

1.4.13 Contracts for modules

The function module_load allows you to control what can happen at module load stage.

Usage:

1. Call deal.activate() before importing anything.

2. Call deal.module_load() in any place at module level in all modules that should be tested. Pass inside all
contracts that should be controlled. By design, only contracts from deal without arguments are supported.

Example

__init__.py:

import deal

deal.activate()

from .other import something

other.py:

import deal
import something_else

deal.module_load(deal.pure)

something = 1
print(1) # contract violation! deal.SilentContractError will be raised

How it works

1. Calling deal.activate registers import finder and loader. From now, all imported files will be checked by
deal.

2. The loader reads imported file, generates AST for it, and looks for deal.module_load calling.

3. If loader found deal.module_load in the module, it extracts contracts from it.

4. If all contracts are valid (imported from deal and have no arguments), loader loads the module with contracts
activated.

1.4. Contributing 29

https://docs.python.org/3/reference/import.html#finders-and-loaders
https://docs.python.org/3/library/ast.html

Deal Documentation

Motivation

This contract is inspired by article Python at Scale: Strict Modules. A module loading should be fast, pure, and safe.
This function allows to enforce it.

1.4.14 Dispatch

Warning: This feature is experimental. It works and the API is stable but the behavior in some corner cases may
change in the future.

The decorator deal.dispatch allows combining multiple implementations of a function into one. When the
combined function is called, deal will try to execute every implementation and return the result of the first one that
hasn’t raised PreContractError.

@deal.dispatch
def age2stage(age: int) -> str:

raise NotImplementedError

@age2stage.register
@deal.pre(lambda age: age < 12)
def _(age: int) -> int:

return 'kid'

@age2stage.register
@deal.pre(lambda age: age < 18)
def _(age: int) -> int:

return 'teen'

age2stage(10) # 'kid'
age2stage(14) # 'teen'

If the given arguments passed preconditions for none of the implementations, NoMatchError is raised:

age2stage(20)
NoMatchError: expected age < 12 (where age=20); expected age < 18 (where age=20)

To avoid it, just add a default implementation:

@age2stage.register
def _(age: int) -> int:

return 'adult'

age2stage(20) # 'adult'

The initially decorated function (which you directly pass into @deal.dispatch) is never executed. It is used
only to provide the name, docstring, and type annotations for the combined function. However, we specify raise
NotImplementedError instead of just pass as the function body, so type checkers won’t complain about invalid
return type.

Since dispatch requires contracts to be enabled, when you call a dispatched function, contracts get forcefully enabled
for the function duration. It may be changed in the future to enable only needed deal.pre contracts. So, keep it in
mind: if you want to disable all contracts on the production all together, deal.dispatch could be a bad fit for your
application.

30 Chapter 1.

https://instagram-engineering.com/python-at-scale-strict-modules-c0bb9245c834

Deal Documentation

Motivation

The decorator was introduced as a way to do the same as functools.singledispatch but using preconditions instead
of types. It gives you much more flexibility, allowing you to implement anything you could do in some other lan-
guages with the combination of pattern matching, guards, and function overloading. A classic example is recursively
calculating factorial.

In Elixir:

defmodule Math do
@spec fac(integer) :: integer
@doc """
Calculate factorial of the given number.
"""
def fac(0), do: 1
def fac(n) when n > 0, do: n * fac(n - 1)

end

Math.fac(5) # 120
Math.fac(-1) # FunctionClauseError

And the same in Python using deal.dispatch:

@deal.dispatch
def fac(n: int) -> int:

"""Calculate factorial of the given number.
"""
raise NotImplementedError

@fac.register
@deal.pre(lambda n: n == 0)
def _(n):

return 1

@fac.register
@deal.pre(lambda n: n > 0)
def _(n):

return n * fac(n - 1)

fac(5) # 120
fac(-1) # NoMatchError

The implementation based on deal.dispatch is more verbose. However, it pays back when each implementation
is complex. For example, reading a config in different formats.

Simple solution:

from pathlib import Path

def read_config(path: Path) -> Config:
if path.suffix == '.json':

...
if path.suffix in {'.yml', '.yaml'}:

...
raise ValueError

And solution with dispatch:

1.4. Contributing 31

https://docs.python.org/3/library/functools.html#functools.singledispatch
https://en.wikipedia.org/wiki/Pattern_matching
https://en.wikipedia.org/wiki/Guard_(computer_science)
https://en.wikipedia.org/wiki/Function_overloading

Deal Documentation

@deal.dispatch
def read_config(path: Path) -> Config:

raise NotImplementedError

@read_config.register
@deal.pre(lambda path: path.suffix == '.json')
def read_json(path):

...

@read_config.register
@deal.pre(lambda path: path.suffix in {'.yml', '.yaml'})
def read_yaml(path):

...

The latter gives multiple benefits:

1. Each implementation is isolated from others, and so it is easier to read and maintain.

2. Each implementation can be called directly, by users of from tests.

3. Pre-conditions are attached to implementations rather than the read_config function, so even if an imple-
mentation is called directly, we still can be sure that it is used correctly.

4. Users can register new implementations. So, you have a plugins system out of the box.

1.4.15 Documentation

Sphinx autodoc

Deal has an integration with sphinx documentation generator, namely with autodoc extension. The integration includes
all contracts for documented functions into the generated documentation.

The minimal config:

import deal

extensions = ['sphinx.ext.autodoc']

def setup(app):
deal.autodoc(app)

And that’s all. Now, every time you include something using autodoc, deal will automatically inject documentation
for contracts.

This is how deal converts every contract into text:

1. If the contract has message argument specified, it is used.

2. If the contract is a named function, the function name is used.

3. If the contract is a lambda, the source code is used.

See also sphinx example.

32 Chapter 1.

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html

Deal Documentation

deal.example

The decorator deal.example allows to provide a usage example for the decorated function. This example is
executed only when running tests and partially checked by the linter. It’s not, however, executed at runtime. The
example must return True if it is valid.

@deal.example(lambda: double(3) == 6)
def double(x):

return x * 2

Depending on the context and on the mypy version you use, you may encounter Cannot determine type of
"double" error message from mypy (see mypy#11212). If you do, you can:

1. Upgrade mypy version above 0.910.

2. Add # type: ignore[has-type] to the reported line.

3. Add has-type code into disable_error_code list in the mypy configuration file.

If you want to provide an example of when the function raises an exception, you can catch and compare this exception
using deal.catch:

@deal.example(lambda: deal.catch(div, 4, 0) is ZeroDivisionError)
@deal.raises(ZeroDivisionError)
@deal.reason(ZeroDivisionError, lambda x: x == 0)
def div(x, y):

return x / y

For more complex examples (requiring setup, teardown, or complicated arguments) use doctest.

Writing docstrings

The Writing docstrings page of Sphinx documentation provides a good description on how to write docstrings in RST
format. Also, there is PEP-257 which describes stylistic conventions related to docstrings (and tells what docstrings
are).

Using Markdown

If you prefer more human-friendly Markdown, it needs a bit of hacking. The MyST-Parser extension allows to use
Markdown for Sphinx documentation but not for docstrings (see #228). If you want Markdown support for docstrings,
you can add m2r2 converter into docs/conf.py as a hook for autodoc:

from m2r2 import convert

def autodoc_process(app, what, name, obj, options, lines):
if not lines:

return lines
text = convert('\n'.join(lines))
lines[:] = text.split('\n')

def setup(app):
app.connect('autodoc-process-docstring', autodoc_process)

It doesn’t matter what format you choose, deal supports all of them.

1.4. Contributing 33

https://github.com/python/mypy/issues/11212
https://mypy.readthedocs.io/en/stable/error_code_list.html#check-that-type-of-target-is-known-has-type
https://mypy.readthedocs.io/en/stable/config_file.html#confval-disable_error_code
https://mypy.readthedocs.io/en/stable/config_file.html
https://docs.python.org/3/library/doctest.html
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
https://devguide.python.org/documenting/
https://devguide.python.org/documenting/
https://www.python.org/dev/peps/pep-0257/
https://en.wikipedia.org/wiki/Markdown
https://github.com/executablebooks/MyST-Parser
https://github.com/executablebooks/MyST-Parser/issues/228
https://github.com/CrossNox/m2r2

Deal Documentation

1.4.16 Stubs

When linter analyses a function, it checks all called functions inside it, even if these functions have no explicit con-
tracts. For example:

import deal

def a():
raise ValueError

@deal.raises(NameError)
def b():

return a()

Here deal finds and error:

$ python3 -m deal lint tmp.py
tmp.py

8:11 raises contract error (ValueError)
return a()

However, in the next case deal doesn’t report anything:

import deal

def a():
raise ValueError

def b():
return a()

@deal.raises(NameError)
def c():

return b()

That’s because the exception is raised deep inside the call chain. Analyzing function calls too deep would make deal
too slow. The solution is to make contracts for everything in your code that you want to be analyzed. However, when
it’s about third-party libraries where you can’t modify the code, stubs come into play.

Use stub command to generate stubs for a Python file:

python3 -m deal stub /path/to/a/file.py

The command above will produce /path/to/a/file.json stub. On the next runs linter will use it do detect
contracts.

Built-in stubs

Deal comes with a few pre-generated stubs that are automatically used by the linter:

• Standard library (CPython 3.7)

• marshmallow

• python-dateutil

• pytz

• requests

34 Chapter 1.

https://pypi.org/project/marshmallow/
https://pypi.org/project/python-dateutil/
https://pypi.org/project/pytz/
https://pypi.org/project/requests/

Deal Documentation

• urllib3

1.4.17 More on testing

This section assumes that you’re familiar with basic testing and describes how you can get more from deal testing
mechanisms.

Finding memory leaks

Sometimes, when a function is completed, it leaves in memory other objects except result. For example:

cache = {}
User = dict

def get_user(name: str) -> User:
if name not in cache:

cache[name] = User(name=name)
return cache[name]

Here, get_user creates a User object and stores it in a global cache. In this case, this “leak” is a desired behavior
and we don’t want to fight it. This is why we can’t a tool (or something right in the Python interpreter) that catches
and reports such behavior, it would have too many false-positives.

However, things are different with pure functions. A pure function can’t store anything on a side because it is a side
effect. The result of a pure function is only what it returns.

The command memtest uses this idea to find memory leaks in pure functions. How it works:

1. It finds all pure functions (as test does).

2. For every function:

1. It makes memory snapshot before running the function.

2. It runs the function with different autogenerated input arguments (as test command does) without run-
ning contracts and checking the return value type (to avoid side-effects from deal itself).

3. It makes memory snapshot after running the function.

4. Snapshots “before” and “after” are compared. If there is a difference it will be printed.

The return code is equal to the amount of functions with memory leaks.

If the function fails, the command will ignore it and still test the function for leaks. Side-effects shouldn’t happen
unconditionally, even if the function fails. If you want to find unexpected failures, use test command instead.

Constant value for arguments

The deal.cases constructor accepts kwargs argument where you can specify constant values for the function
arguments. For example:

@deal.raises(ZeroDivisionError)
def div(a: int, b: int) -> float:

assert a == 1
return a / b

Every test case calls `div` function with `a=1`.

(continues on next page)

1.4. Contributing 35

https://pypi.org/project/urllib3/

Deal Documentation

(continued from previous page)

So, random values are generated only for `b`.
@deal.cases(div, kwargs=dict(a=1))
def test_div(case):

case()

Custom strategies

Under the hood, deal.cases uses hypothesis testing framework to generate test cases. The trick is that kwargs
argument of deal.cases can contain hypothesis strategies:

import hypothesis.strategies as st

@deal.raises(ZeroDivisionError)
def div(a: int, b: int) -> float:

assert a >= 10
return a / b

cases = deal.cases(
func=div,
kwargs=dict(

a=st.integers(min_value=10),
),

)
for case in cases:

case()

Reproducible failures

Argument seed of deal.cases is a random seed. That means, for the same seed value you always get the same
test cases. It is a must-have thing for CI. There are a few important things:

• If the seed is different for different pipelines, it will run a bit different test cases every time which increases your
chances to find a tricky corner case.

• If the seed is the same when you re-run the same job, it will help you to identify flaky tests. In other words, if a
CI job fails, you re-run it, and it passes, it was a flaky test which happens because of tricky side-effects (database
connection failed, another test changed a state etc.) and it will be hard to reproduce. However, if re-run fails
with the same error, most probably it is a failure that you can easily reproduce and debug locally, knowing the
seed.

• The seed should be shown in the CI job to make it possible to use it locally to reproduce a failure. It is either
printed in the job output or is something known like the pipeline run number.

There is an example for GitLab CI:

import os
import deal

seed = None
if os.environ.get('CI_PIPELINE_ID'):

seed = int(os.environ['CI_PIPELINE_ID'])

@deal.cases(div, seed=seed)
def test_div(case):

case()

36 Chapter 1.

https://hypothesis.readthedocs.io/en/latest/index.html

Deal Documentation

Fuzzing

Fuzzer is when an external tool or library (fuzzer) generates a bunch of random data in hope to break your program.
That means, fuzzing requires a lot of resources and is performance-critical. This is why most of the fuzzers are written
on C. However, there are few Python wrappers for existing fuzzers to simplify fuzzing for Python functions:

• atheris

• python-afl

• pythonfuzz

The deal.cases object can be used as a target for any fuzzer.

Atheris:

import atheris

test = deal.cases(div)
atheris.Setup([], test)
atheris.Fuzz()

PythonFuzz:

from pythonfuzz.main import PythonFuzz

test = deal.cases(div)
PythonFuzz(test)()

See fuzzing_atheris and fuzzing_pythonfuzz examples for the full code.

Iteration over cases

The deal.cases object can be used not only as a function or decorator but also as an iterable. On iteration, it emits
the test cases, so you can have more control over what and when to run:

for case in deal.cases(div):
case()

However, in this case deal doesn’t know which cases have failed and can’t provide that information back into hypoth-
esis for shrinking (finding the smallest example to reproduce a failure). So while it is the same as decorator when
everything is fine, it will provide a bit uglier report on failure.

Mixing with Hypothesis

Under the hood, deal uses hypothesis to generate test cases. So, we can mix deal.cases with hypothesis decora-
tors. The only exception is hypothesis.settings which should be passed into deal.cases as settings
argument because hypothesis doesn’t support application of settings twice but deal applies its own default settings.

See using_hypothesis example.

1.4. Contributing 37

https://en.wikipedia.org/wiki/Fuzzing
https://github.com/google/atheris
https://github.com/jwilk/python-afl
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/pythonfuzz

Deal Documentation

1.4.18 Recipes

Some ideas that are useful in the real world applications.

Keep contracts simple

If a function accepts only a few short arguments, duplicate the original signature (without annotations) for contracts:

@deal.pre(lambda left, right: right != 0)
def div(left: float, right: float) -> float:

return left / right

Otherwise, or if a function has default arguments, use simplified signature for contracts:

@deal.pre(lambda _: _.default is not None or _.right != 0)
def div(left: float, right: float, default: float = None) -> float:

try:
return left / right

except ZeroDivisionError:
if default is not None:

return default
raise

Don’t check types

Never check types with deal. MyPy does it much better. Also, there are plenty of alternatives for both static and
dynamic validation. Deal is intended to empower types, to tell a bit more about possible values set than you can do
with type annotations, not replace them. However, if you want to play with deal a bit or make types a part of contracts,
PySchemes-based contract is a good solution:

import deal
from pyschemes import Scheme

@deal.pre(Scheme(dict(left=str, right=str)))
def concat(left, right):

return left + right

concat('ab', 'cd')
'abcd'

concat(1, 2)
PreContractError: at key 'left' (expected type: 'str', got 'int')

Prefer pre and post over ensure

If a contract needs only function arguments, use pre. If a contract checks only function result, use post. And only if
a contract need both input and output values at the same time, use ensure. Keeping available namespace for contract
as small as possible makes the contract signature simpler and helps with partial execution in the linter.

38 Chapter 1.

https://github.com/python/mypy
https://github.com/typeddjango/awesome-python-typing
https://github.com/spy16/pyschemes

Deal Documentation

Prefer reason over raises

Always try your best to tell why exception can be raised. However, keep in mind that all exceptions from reason
still have to be explicitly specified in raises since contracts are isolated and have no way to exchange information
between each other:

@deal.reason(ZeroDivisionError, lambda a, b: b == 0)
@deal.raises(ZeroDivisionError)
def divide(a, b):

return a / b

Keep module initialization pure

Nothing should happen on module load. Create some constants, compile RegExes, and that’s all. Make it lazy.

deal.module_load(deal.pure)

Contracts shouldn’t be important

Never catch contract errors. Never rely on them in runtime. They are for tests and humans. The shouldn’t have an
actual logic, only validate it.

Short signature conflicts

In short signature, _ is a dict with access by attributes. Hence it has all dict attributes. So, if argument we need
conflicts with a dict attribute, use getitem instead of getattr. For example, we should use _['items'] instead of
_.items.

Keep contracts pure

You can use any logic inside the validator. However, thumb up rule is to keep contracts pure (without any side-effects,
even logging). The main motivation for it is that some contracts can be partially executed by linter.

The message is a description, not an error

The message argument should tell what is expected behavior without assuming that the user violated it. This is
because the users can encounter it not only when a ContractError is raised but also when they just read the
source code or generated documentation. For example, if your contract checks that b >= 0, don’t say “b is negative”
(what is violated), say “b must be non-negative” (what is expected).

Markers are not only side-effects

The @deal.has decorator is used to track markers. Some of the markers describing side-effects (like stdout) are
predefined and detected by linter and in runtime. However, markers can be also used to track anything else you’d like
to track in your code. A few examples:

• Functions that are usually slow.

• Functions that can be called only for a user with admin access.

• Functions that access the database.

1.4. Contributing 39

https://en.wikipedia.org/wiki/Pure_function

Deal Documentation

• Functions that access the patient data.

• Functions that can only work with some additional dependencies installed.

• Deprecated functions.

• Functions that need refactoring.

Permissive license

Deal is distributed under MIT License which is a permissive license with high license compatibility.. On practice,
do whatever you want with deal, I don’t care. However, if you install deal with all extra (pip3 install
'deal[all]'), it will also install astroid which is licensed under LGPL. While this license allows to be used in
non-LGPL proprietary software too, it still can be not enough for some companies. So, if this is the case for you, avoid
bringing all extra on the prod.

1.4.19 Examples

choice

import random
from typing import List

import deal

the list cannot be empty
@deal.pre(lambda items: bool(items))
result is an element withit the given list
@deal.ensure(lambda items, result: result in items)
@deal.has('random')
def choice(items: List[str]) -> str:

"""Get a random element from the given list.
"""
return random.choice(items)

test_choice = deal.cases(choice)

concat

import deal

@deal.ensure(lambda _: _.result.startswith(_.left))
@deal.ensure(lambda _: _.result.endswith(_.right))
@deal.ensure(lambda _: len(_.result) == len(_.left) + len(_.right))
@deal.has()
def concat(left: str, right: str) -> str:

"""Concatenate 2 given strings.

https://deal.readthedocs.io/basic/motivation.html
"""
return left + right

(continues on next page)

40 Chapter 1.

https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/License_compatibility
https://github.com/PyCQA/astroid
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

Deal Documentation

(continued from previous page)

test_concat = deal.cases(concat)

count

from typing import List

import deal

In short signature, `_` is a `dict` with access by attributes.
Hence it has all dict attributes. So, if argument we need conflicts
with a dict attribute, use getitem instead of getattr.
In the example below, we use `_['items']` instead of `_.items`.

@deal.post(lambda result: result >= 0)
if count is not zero, `item` appears in `items` at least once.
@deal.ensure(lambda _: _.result == 0 or _['item'] in _['items'])
if count is zero, `item` is not in `items`
@deal.ensure(lambda _: _.result != 0 or _['item'] not in _['items'])
@deal.has()
def count(items: List[str], item: str) -> int:

"""How many times `item` appears in `items`
"""
return items.count(item)

test_count = deal.cases(count)

div

import deal

@deal.raises(ZeroDivisionError)
@deal.reason(ZeroDivisionError, lambda _: _.right == 0)
@deal.has()
def div1(left: float, right: float) -> float:

"""
This implementation allows zero to be passed
but raises ZeroDivisionError in that case.
"""
return left / right

@deal.pre(lambda _: _.right != 0)
@deal.has()
def div2(left: float, right: float) -> float:

"""
This implementation doesn't allow zero to be passed in a function.
If it is accidentally passed, PreConditionError will be raised
and the funcrion won't be executed.

(continues on next page)

1.4. Contributing 41

Deal Documentation

(continued from previous page)

"""
return left / right

test_div1 = deal.cases(div1)
test_div2 = deal.cases(div2)

fuzzing_atheris

"""
Get help for libFuzzer:

python3 examples/fuzzing_atheris.py -help=1

Run 1000 test cases:
python3 examples/fuzzing_atheris.py -runs=1000

"""
import codecs
import sys

import atheris

import deal

def encode(text: str) -> str:
return codecs.encode(text, encoding='rot13')

@deal.ensure(lambda text, result: encode(result) == text)
def decode(text: str) -> str:

assert text != 'bad'
return codecs.encode(text, encoding='rot13')

def fuzz():
test = deal.cases(decode)
atheris.Setup(sys.argv, test)
atheris.Fuzz()

if __name__ == '__main__':
fuzz()

fuzzing_pythonfuzz

import codecs

from pythonfuzz.main import PythonFuzz

import deal

def encode(text: str) -> str:

(continues on next page)

42 Chapter 1.

Deal Documentation

(continued from previous page)

return codecs.encode(text, encoding='rot13')

@deal.ensure(lambda text, result: encode(result) == text)
def decode(text: str) -> str:

assert text != 'bad'
return codecs.encode(text, encoding='rot13')

def fuzz():
test = deal.cases(decode)
PythonFuzz(test)()

if __name__ == '__main__':
fuzz()

using_hypothesis

from typing import List

import hypothesis

import deal

@deal.pre(lambda items: len(items) > 0)
@deal.has()
def my_min(items: List[int]) -> int:

return min(items)

@hypothesis.example([1, 2, 3])
@deal.cases(

func=my_min,
settings=hypothesis.settings(

verbosity=hypothesis.Verbosity.normal,
),

)
def test_min(case):

case()

if __name__ == '__main__':
test_min()

1.4. Contributing 43

Deal Documentation

index_of

from typing import List

import deal

if you have more than 2-3 contracts,
consider moving them from decorators into separate variable
like this:
contract_for_index_of = deal.chain(

result is an index of items
deal.post(lambda result: result >= 0),
deal.ensure(lambda items, item, result: result < len(items)),
element at this position matches item
deal.ensure(

lambda items, item, result: items[result] == item,
message='invalid match',

),
element at this position is the first match
deal.ensure(

lambda items, item, result: not any(el == item for el in items[:result]),
message='not the first match',

),
LookupError will be raised if no elements found
deal.raises(LookupError),
deal.reason(LookupError, lambda items, item: item not in items),
no side-effects
deal.has(),

)

@contract_for_index_of
def index_of(items: List[int], item: int) -> int:

for index, el in enumerate(items):
if el == item:

return index
raise LookupError

test_index_of = deal.cases(index_of)

min

from typing import List

import deal

@deal.pre(lambda items: len(items) > 0)
@deal.has()
def my_min(items: List[int]) -> int:

return min(items)

@deal.has('stdout')
(continues on next page)

44 Chapter 1.

Deal Documentation

(continued from previous page)

def example():
good
print(my_min([3, 1, 4]))
bad
print(my_min([]))

test_min = deal.cases(my_min)

Linter output:

$ python3 -m deal lint examples/min.py
examples/min.py

21:4 DEL011 pre contract error ([])
my_min([])
^

format

import re

import deal

def contract(template: str, *args):
rex = re.compile(r'\{\:([a-z])\}')
types = {'s': str, 'd': float}
matches = rex.findall(template)
if len(matches) != len(args):

return f'expected {len(matches)} argument(s) but {len(args)} found'
for match, arg in zip(matches, args):

t = types[match[0]]
if not isinstance(arg, t):

return f'expected {t.__name__}, {type(arg).__name__} given'
return True

@deal.pre(contract)
def format(template: str, *args) -> str:

return template.format(*args)

@deal.has('io')
def example():

good
print(format('{:s}', 'hello'))

bad
print(format('{:s}')) # not enough args
print(format('{:s}', 'a', 'b')) # too many args
print(format('{:d}', 'a')) # bad type

if __name__ == '__main__':
print(format('{:s} {:s}', 'hello', 'world'))

1.4. Contributing 45

Deal Documentation

Linter output:

$ python3 -m deal lint examples/format.py
examples/format.py

32:10 DEL011 expected 1 argument(s) but 0 found ('{:s}')
print(format('{:s}')) # not enough args

^
33:10 DEL011 expected 1 argument(s) but 2 found ('{:s}', 'a', 'b')
print(format('{:s}', 'a', 'b')) # too many args

^
34:10 DEL011 expected float, str given ('{:d}', 'a')
print(format('{:d}', 'a')) # bad type

^

sphinx

Source code:

import deal

@deal.reason(ZeroDivisionError, lambda a, b: b == 0)
@deal.reason(ValueError, lambda a, b: a == b, message='a is equal to b')
@deal.raises(ValueError, IndexError, ZeroDivisionError)
@deal.pre(lambda a, b: b != 0)
@deal.pre(lambda a, b: b != 0, message='b is not zero')
@deal.ensure(lambda a, b, result: b != result)
@deal.post(lambda res: res != .13)
@deal.has('database', 'network')
@deal.example(lambda: example(6, 2) == 3)
def example(a: int, b: int) -> float:

"""Example function.

:return: The description for return value.
"""
return a / b

Sphinx config (docs/conf.py):

import deal

extensions = ['sphinx.ext.autodoc']

def setup(app):
deal.autodoc(app)

Including into a documentation page (docs/index.rst):

.. autofunction:: examples.sphinx.example

Generated output:

examples.sphinx.example(a: int, b: int)→ float
Example function.

Returns The description for return value.

Side-effects

46 Chapter 1.

Deal Documentation

• network

• database

Raises

• IndexError –

• ValueError – a is equal to b

• ZeroDivisionError – b == 0

Contracts

• b is not zero

• b != 0

• res != .13

• b != result

Examples

• example(6, 2) == 3

1.4.20 CLI

lint

deal._cli._lint.LintCommand(stream: TextIO, root: pathlib.Path)→ None
Run linter against the given files.

python3 -m deal lint project/

Options:

• --json: output violations as json per line.

• --nocolor: output violations in human-friendly format but without colors. Useful for running linter on
CI.

Exit code is equal to the found violations count. See linter documentation for more details.

decorate

deal._cli._decorate.DecorateCommand(stream: TextIO, root: pathlib.Path)→ None
Add decorators to your code.

python3 -m deal decorate project/

Options:

• --types: types of decorators to apply. All are enabled by default.

• --double-quotes: use double quotes. Single quotes are used by default.

• --nocolor: do not use colors in the console output.

The exit code is always 0. If you want to test the code for missed decorators, use the lint command instead.

1.4. Contributing 47

http://ndjson.org/
https://deal.readthedocs.io/basic/linter.html

Deal Documentation

test

deal._cli._test.TestCommand(stream: TextIO, root: pathlib.Path)→ None
Generate and run tests against pure functions.

python3 -m deal test project/

Function must be decorated by one of the following to be run:

• @deal.pure

• @deal.has() (without arguments)

Options:

• --count: how many input values combinations should be checked.

Exit code is equal to count of failed test cases. See tests documentation for more details.

memtest

deal._cli._memtest.MemtestCommand(stream: TextIO, root: pathlib.Path)→ None
Generate and run tests against pure functions and report memory leaks.

python3 -m deal memtest project/

Function must be decorated by one of the following to be run:

• @deal.pure

• @deal.has() (without arguments)

Options:

• --count: how many input values combinations should be checked.

Exit code is equal to count of leaked functions. See memory leaks documentation for more details.

stub

deal._cli._stub.StubCommand(stream: TextIO, root: pathlib.Path)→ None
Generate stub files for the given Python files.

python3 -m deal stub project/

Options:

• --iterations: how many time run stub generation against files. Every new iteration uses results from
the previous ones, improving the result. Default: 1.

Exit code is 0. See stubs documentation for more details.

48 Chapter 1.

https://deal.readthedocs.io/basic/tests.html
https://deal.readthedocs.io/details/tests.html#memory-leaks
https://deal.readthedocs.io/details/stubs.html

Deal Documentation

prove

deal._cli._prove.ProveCommand(stream: TextIO, root: pathlib.Path)→ None
Verify correctness of code.

python3 -m deal prove project/

Options:

• --skipped: show skipped functions.

• --nocolor: disable colored output.

Exit code is equal to the failed theorems count. See Formal Verification documentation for more information.

1.4.21 API

Values

deal.pre(validator, *, message: str | None = None, exception: ExceptionType | None = None) →
Callable[[C], C]

Decorator implementing precondition value contract.

Precondition is a condition that must be true before the function is executed. Raises PreContractError
otherwise.

Parameters

• validator – a function or validator that implements the contract.

• message – error message for the exception raised on contract violation. No error message
by default.

• exception – exception type to raise on the contract violation. PreContractError by
default.

Returns a function wrapper.

>>> import deal
>>> @deal.pre(lambda a, b: a + b > 0)
... def example(a, b):
... return (a + b) * 2
>>> example(1, 2)
6
>>> example(1, -2)
Traceback (most recent call last):
...

PreContractError: expected a + b > 0 (where a=1, b=-2)

deal.post(validator, *, message: str | None = None, exception: ExceptionType | None = None) →
Callable[[C], C]

Decorator implementing postcondition value contract.

Postcondition is a condition that must be true for the function result. Raises PostContractError otherwise.

Parameters

• validator – a function or validator that implements the contract.

• message – error message for the exception raised on contract violation. No error message
by default.

1.4. Contributing 49

https://deal.readthedocs.io/basic/verification.html
https://deal.readthedocs.io/basic/values.html
https://en.wikipedia.org/wiki/Precondition
https://deal.readthedocs.io/basic/values.html
https://en.wikipedia.org/wiki/Postcondition

Deal Documentation

• exception – exception type to raise on the contract violation. PostContractError
by default.

Returns a function wrapper.

>>> import deal
>>> @deal.post(lambda res: res > 0)
... def example(a, b):
... return a + b
>>> example(-1, 2)
1
>>> example(1, -2)
Traceback (most recent call last):
...

PostContractError: expected res > 0 (where res=-1)

deal.ensure(validator, *, message: str | None = None, exception: ExceptionType | None = None) →
Callable[[C], C]

Decorator implementing postcondition value contract.

Postcondition is a condition that must be true for the function result. Raises PostContractError otherwise.
It’s like @deal.post but contract accepts as input value not only the function result but also the function input
arguments. The function result is passed into validator as result keyword argument.

Parameters

• validator – a function or validator that implements the contract.

• message – error message for the exception raised on contract violation. No error message
by default.

• exception – exception type to raise on the contract violation. PostContractError
by default.

Returns a function wrapper.

>>> import deal
>>> @deal.ensure(lambda a, result: a < result)
... def example(a):
... return a * 2
>>> example(2)
4
>>> example(0)
Traceback (most recent call last):
...

PostContractError: expected a < result (where result=0, a=0)

deal.inv(validator, *, message: str | None = None, exception: ExceptionType | None = None) →
Callable[[T], T]

Decorator implementing invariant value contract.

Invariant is a condition that can be relied upon to be true during execution of a program. @deal.inv is
triggered in 3 cases:

1. Before class method execution.

2. After class method execution.

3. After some class attribute setting.

Deal doesn’t rollback changes on contract violation.

Parameters

50 Chapter 1.

https://deal.readthedocs.io/basic/values.html
https://en.wikipedia.org/wiki/Postcondition
https://deal.readthedocs.io/basic/values.html
https://en.wikipedia.org/wiki/Class_invariant

Deal Documentation

• validator – a function or validator that implements the contract.

• message – error message for the exception raised on contract violation. No error message
by default.

• exception – exception type to raise on the contract violation. InvContractError by
default.

Returns a class wrapper.

>>> import deal
>>> @deal.inv(lambda obj: obj.likes >= 0)
... class Video:
... likes = 1
... def like(self): self.likes += 1
... def dislike(self): self.likes -= 1
...
>>> v = Video()
>>> v.dislike()
>>> v.likes
0
>>> v.dislike()
Traceback (most recent call last):
...
InvContractError: expected obj.likes >= 0
>>> v.likes
-1
>>> v.likes = 2
>>> v.likes = -2
Traceback (most recent call last):
...
InvContractError: expected obj.likes >= 0
>>> v.likes
-2

deal.example(validator: Callable[], bool])→ Callable[[C], C]
Decorator for providing a usage example for the wrapped function.

The example isn’t checked at runtime. Instead, it is run in tests and checked by the linter. The example should
use the decorated function and return True if the result is expected.

>>> import deal
>>> @deal.example(lambda: double(3) == 6)
... def double(x):
... return x * 2
...

deal.dispatch(func: C)→ Dispatch[C]
Combine multiple functions into one.

When the decorated function is called, it will try to call all registered functions and return the result from the
first one that doesn’t raise PreContractError.

>>> import deal
>>> @deal.dispatch
... def double(x: int) -> int:
... raise NotImplementedError
...
>>> @double.register

(continues on next page)

1.4. Contributing 51

Deal Documentation

(continued from previous page)

... @deal.pre(lambda x: x == 3)

... def _(x: int) -> int:

... return 6

...
>>> @double.register
... @deal.pre(lambda x: x == 4)
... def _(x: int) -> int:
... return 8
...
>>> double(3)
6
>>> double(4)
8
>>> double(5)
Traceback (most recent call last):

...
NoMatchError: expected x == 3 (where x=5); expected x == 4 (where x=5)

Side-effects and exceptions

deal.has(*markers: str, message: str | None = None, exception: ExceptionType | None = None) →
Callable[[C], C]

Decorator controlling side-effects of the function.

Allows to specify markers identifying which side-effect the functon may have. Side-effects must be propagated
into all callers using deal.has, this is controlled by the linter. Some side-effects are also checked at runtime.

>>> import deal
>>> @deal.has()
... def greet():
... print('hello')
...
>>> greet()
Traceback (most recent call last):

...
SilentContractError
>>> @deal.has('stdout')
... def greet():
... print('hello')
...
>>> greet()
hello

deal.raises(*exceptions: type[BaseException], message: str | None = None, exception: ExceptionType |
None = None)→ Callable[[C], C]

Decorator listing the exceptions which the function can raise.

Implements exception contract. If the function raises an exception not listed in the decorator,
RaisesContractError will be raised.

Parameters

• exceptions – exceptions which the function can raise.

• message – error message for the exception raised on contract violation. No error message
by default.

52 Chapter 1.

https://deal.readthedocs.io/basic/side-effects.html
https://deal.readthedocs.io/basic/linter.html
https://deal.readthedocs.io/basic/exceptions.html

Deal Documentation

• exception – exception type to raise on the contract violation.
RaisesContractError by default.

Returns a function wrapper.

>>> import deal
>>> @deal.raises(ZeroDivisionError, ValueError)
... def div(a, b):
... return a / b
...
>>> div(1, 0)
Traceback (most recent call last):

...
ZeroDivisionError: division by zero
>>> div(1, '')
Traceback (most recent call last):

...
TypeError: unsupported operand type(s) for /: 'int' and 'str'
The above exception was the direct cause of the following exception:

...
RaisesContractError

deal.reason(event: type[Exception], validator, *, message: str | None = None, exception: ExceptionType
| None = None)→ Callable[[C], C]

Decorator implementing exception contract.

Allows to assert precondition for raised exception. It’s like @deal.ensure but when instead of returning result
the function raises an exception.

Parameters

• event – exception raising which will trigger contract validation.

• validator – a function or validator that implements the contract.

• message – error message for the exception raised on contract violation. No error message
by default.

• exception – exception type to raise on the contract violation.
ReasonContractError by default.

Returns a function wrapper.

>>> import deal
>>> @deal.reason(ZeroDivisionError, lambda a, b: b == 0)
... def div(a, b):
... return a / (a - b)
>>> div(2, 1)
2.0
>>> div(0, 0)
Traceback (most recent call last):

...
ZeroDivisionError: division by zero
>>> div(2, 2)
Traceback (most recent call last):

...
ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

...
ReasonContractError: expected b == 0 (where a=2, b=2)

1.4. Contributing 53

https://deal.readthedocs.io/basic/exceptions.html

Deal Documentation

Helpers

deal.inherit(func: TF)→ TF
Inherit contracts from base classes.

Can be used to decorate either the whole class or a separate method.

>>> import deal
>>> class Shape:
... @deal.post(lambda r: r > 2)
... def get_sides(self):
... raise NotImplementedError
...
>>> class Triangle(Shape):
... @deal.inherit
... def get_sides(self):
... return 3
...
>>> class Line(Shape):
... @deal.inherit
... def get_sides(self):
... return 2
...
>>> triangle = Triangle()
>>> triangle.get_sides()
3
>>> line = Line()
>>> line.get_sides()
Traceback (most recent call last):

...
PreContractError: expected r > 0 (where r=2)

deal.chain(*contracts: Callable[[C], C])→ Callable[[F], F]
Decorator to chain 2 or more contracts together.

It can be helpful to store contracts separately from the function. Consider using it when you have too many
contracts. Otherwise, the function will be lost under a bunch of decorators.

>>> import deal
>>> sum_contract = deal.chain(
... deal.pre(lambda a, b: a > 0),
... deal.pre(lambda a, b: b > 0),
... deal.post(lambda res: res > 0),
...)
>>> @sum_contract
... def sum(a, b):
... return a + b
...
>>> sum(2, 3)
5
>>> sum(2, -3)
Traceback (most recent call last):

...
PreContractError: expected b > 0 (where a=2, b=-3)
>>> sum(-2, 3)
Traceback (most recent call last):

...
PreContractError: expected a > 0 (where a=-2, b=3)

54 Chapter 1.

Deal Documentation

Parameters contracts – contracts to chain.

Returns a function wrapper

deal.pure(_func: C)→ C
Decorator for pure functions.

Alias for @deal.chain(deal.has(), deal.safe).

Pure function has no side-effects and doesn’t raise any exceptions.

>>> import deal
>>> @deal.pure
... def div(a, b, log=False):
... if log:
... print('div called')
... return a / b
...
>>> div(2, 4)
0.5
>>> div(2, 0)
Traceback (most recent call last):

...
ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

...
RaisesContractError
>>> div(2, 3, log=True)
Traceback (most recent call last):

...
SilentContractError

deal.safe(*, message: str | None = 'None', exception: ExceptionType | None = 'None')→ Callable[[C], C]
deal.safe(_func: C)→ C

Alias for @deal.raises(). Wraps a function that never raises an exception.

>>> import deal
>>> @deal.safe
... def div(a, b):
... return a / b
...
>>> div(2, 4)
0.5
>>> div(2, 0)
Traceback (most recent call last):

...
ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

...
RaisesContractError

deal.implies(test, then: T)→ bool | T
Check then only if test is true.

A convenient helper for contracts that must be checked only for some cases. It is known as “implication” or
material conditional.

>>> import deal
>>> deal.implies(False, False)

(continues on next page)

1.4. Contributing 55

https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Material_conditional

Deal Documentation

(continued from previous page)

True
>>> deal.implies(False, True)
True
>>> deal.implies(True, False)
False
>>> deal.implies(True, True)
True

deal.catch(func: Callable, *args, **kwargs)→ type[Exception] | None
Call the function with the given arguments, catching any exception.

The catched exception is returned. This function may be useful in combination with {py:func}deal.
example.

>>> import deal
>>> @deal.example(lambda: deal.catch(div, 4, 0) is ZeroDivisionError)
... @deal.raises(ZeroDivisionError)
... @deal.reason(ZeroDivisionError, lambda x: x == 0)
... def div(x, y):
... return x / y
...
>>>

Testing

Keep in mind that sphinx skipped some of the docstrings for deal.cases.

class deal.cases(func: Callable, *, count: int = 50, kwargs: dict[str, Any] | None = None, check_types:
bool | None = None, settings: hypothesis.settings | None = None, seed: int | None =
None)

Generate test cases for the given function.

__call__(test_func: Callable[[. . .], None])→ Callable[[. . .], None]
__call__()→ None
__call__(buffer: bytes | bytearray | memoryview | BinaryIO)→ bytes | None

Allows deal.cases to be used as decorator, test function, or fuzzing target.

__init__(func: Callable, *, count: int = 50, kwargs: dict[str, Any] | None = None, check_types: bool
| None = None, settings: hypothesis.settings | None = None, seed: int | None = None) →
None

Create test cases generator.

>>> import deal
>>> @deal.pre(lambda a, b: b != 0)
... def div(a: int, b: int) -> float:
... return a / b
...
>>> cases = deal.cases(div)
>>>

__iter__()→ Iterator[TestCase]
Emits test cases.

It can be helpful when you want to see what test cases are generated. The recommend way is to use
deal.cases as a decorator instead.

56 Chapter 1.

https://github.com/sphinx-doc/sphinx/issues/7787

Deal Documentation

>>> import deal
>>> @deal.pre(lambda a, b: b != 0)
... def div(a: int, b: int) -> float:
... return a / b
...
>>> cases = iter(deal.cases(div))
>>> next(cases)
TestCase(args=(), kwargs=..., func=<function div ...>, exceptions=(), check_
→˓types=True)
>>> for case in cases:
... result = case() # execute the test case
>>>

__repr__()→ str
Return repr(self).

__weakref__
list of weak references to the object (if defined)

check_types: bool
check that the result matches return type of the function. Enabled by default.

count: int
how many test cases to generate, defaults to 50.

func: Callable
the function to test. Should be type annotated.

kwargs: dict[str, Any]
keyword arguments to pass into the function.

seed: int | None
Random seed to use when generating test cases. Use it to make tests deterministic.

settings: hypothesis.settings
Hypothesis settings to use instead of default ones.

class deal.TestCase(args: tuple[Any, . . .], kwargs: dict[str, Any], func: Callable, exceptions: tu-
ple[type[Exception], . . .], check_types: bool)

A callable object, wrapper around a function that must be tested.

When called, calls the wrapped function, suppresses expected exceptions, checks the type of the result, and
returns it.

property args
Positional arguments to be passed in the function

property check_types
Check that the result matches return type of the function.

property exceptions
Exceptions that must be suppressed.

property func
The function which will be called when the test case is called

property kwargs
Keyword arguments to be passed in the function

1.4. Contributing 57

Deal Documentation

Introspection

The module provides get_contracts function which enumerates contracts wrapping the given function. Every
contract is returned in wrapper providing a stable interface.

Usage example:

import deal

@deal.pre(lambda x: x > 0)
def f(x):

return x + 1

contracts = deal.introspection.get_contracts(f)
for contract in contracts:

assert isinstance(contract, deal.introspection.Contract)
assert isinstance(contract, deal.introspection.Pre)
assert contract.source == 'x > 0'
assert contract.exception is deal.PreContractError
contract.validate(1)

State management

deal.disable(*, permament: bool = False, warn: bool = True)→ None
Disable all contracts.

If permament=True, contracts are permanently disabled for the current interpreter runtime and cannot be
turned on again.

By default, deal will do a few sanity checks to make sure you haven’t unintentionally disabled contracts on a
test environment. Pass warn=False to disable this behavior.

deal.enable(warn: bool = True)→ None
Enable all contracts.

By default, deal will do a few sanity checks to make sure you haven’t unintentionally enabled contracts on a
production environment. Pass warn=False to disable this behavior.

deal.reset()→ None
Restore contracts state to the default.

All contracts are disabled on production by default. See runtime documentation.

Other functions

deal.autodoc(app: SphinxApp)→ None
Activate the hook for sphinx that includes contracts into documentation generated by autodoc.

deal.activate()→ bool
Activate module-level checks.

This function must be called before importing anything with deal.module_load contract. Otherwise, the contract
won’t be executed.

The best practice is to place it in __init__.py of your project:

>>> import deal
>>> deal.activate()

58 Chapter 1.

https://deal.readthedocs.io/basic/runtime.html
http://www.sphinx-doc.org/
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html

Deal Documentation

See Contracts for importing modules documentation for more details.

deal.module_load(*contracts)→ None
Specify contracts that will be checked at module import time. Keep in mind that deal.activate must be called
before importing a module with module_load contract.

>>> import deal
>>> deal.module_load(deal.has(), deal.safe)

See Contracts for importing modules documentation for more details.

Exceptions

exception deal.ContractError(message: str = '', errors=None, validator=None, params: dict[str,
Any] | None = None, origin: object | None = None)

The base class for all errors raised by deal contracts.

exception deal.ExampleContractError(message: str = '', errors=None, validator=None,
params: dict[str, Any] | None = None, origin: object |
None = None)

The error raised by deal.example for contract violation.

deal.example contracts are checked only during testing and linting, not at runtime.

exception deal.InvContractError(message: str = '', errors=None, validator=None, params:
dict[str, Any] | None = None, origin: object | None = None)

The error raised by deal.inv for contract violation.

exception deal.MarkerError(message: str = '', errors=None, validator=None, params: dict[str,
Any] | None = None, origin: object | None = None)

The base class for errors raised by deal.has for contract violation.

exception deal.NoMatchError(exceptions: tuple[PreContractError, . . .])
The error raised by deal.dispatch when there is no matching implementation.

“No matching implementation” means that all registered functions raised PreContractError.

exception deal.OfflineContractError(message: str = '', errors=None, validator=None,
params: dict[str, Any] | None = None, origin: object |
None = None)

The error raised by deal.has for networking markers violation.

The networking can be allowed by markers io, network, and socket.

exception deal.PostContractError(message: str = '', errors=None, validator=None, params:
dict[str, Any] | None = None, origin: object | None = None)

The error raised by deal.post for contract violation.

exception deal.PreContractError(message: str = '', errors=None, validator=None, params:
dict[str, Any] | None = None, origin: object | None = None)

The error raised by deal.pre for contract violation.

exception deal.RaisesContractError(message: str = '', errors=None, validator=None, params:
dict[str, Any] | None = None, origin: object | None =
None)

The error raised by deal.raises for contract violation.

exception deal.ReasonContractError(message: str = '', errors=None, validator=None, params:
dict[str, Any] | None = None, origin: object | None =
None)

The error raised by deal.reason for contract violation.

1.4. Contributing 59

https://deal.readthedocs.io/details/module_load.html
https://deal.readthedocs.io/details/module_load.html

Deal Documentation

exception deal.SilentContractError(message: str = '', errors=None, validator=None, params:
dict[str, Any] | None = None, origin: object | None =
None)

The error raised by deal.has for printing markers violation.

The printing can be allowed by markers io, print, stdout, and stderr.

60 Chapter 1.

PYTHON MODULE INDEX

d
deal.introspection, 58

61

Deal Documentation

62 Python Module Index

INDEX

Symbols
__call__() (deal.cases method), 56
__init__() (deal.cases method), 56
__iter__() (deal.cases method), 56
__repr__() (deal.cases method), 57
__weakref__ (deal.cases attribute), 57

A
activate() (in module deal), 58
args() (deal.TestCase property), 57
autodoc() (in module deal), 58

C
cases (class in deal), 56
catch() (in module deal), 56
chain() (in module deal), 54
check_types (deal.cases attribute), 57
check_types() (deal.TestCase property), 57
ContractError, 59
count (deal.cases attribute), 57

D
deal.introspection

module, 58
DecorateCommand() (in module

deal._cli._decorate), 47
disable() (in module deal), 58
dispatch() (in module deal), 51

E
enable() (in module deal), 58
ensure() (in module deal), 50
example() (in module deal), 51
example() (in module examples.sphinx), 46
ExampleContractError, 59
exceptions() (deal.TestCase property), 57

F
func (deal.cases attribute), 57
func() (deal.TestCase property), 57

H
has() (in module deal), 52

I
implies() (in module deal), 55
inherit() (in module deal), 54
inv() (in module deal), 50
InvContractError, 59

K
kwargs (deal.cases attribute), 57
kwargs() (deal.TestCase property), 57

L
LintCommand() (in module deal._cli._lint), 47

M
MarkerError, 59
MemtestCommand() (in module deal._cli._memtest),

48
module

deal.introspection, 58
module_load() (in module deal), 59

N
NoMatchError, 59

O
OfflineContractError, 59

P
post() (in module deal), 49
PostContractError, 59
pre() (in module deal), 49
PreContractError, 59
ProveCommand() (in module deal._cli._prove), 49
pure() (in module deal), 55

R
raises() (in module deal), 52
RaisesContractError, 59

63

Deal Documentation

reason() (in module deal), 53
ReasonContractError, 59
reset() (in module deal), 58

S
safe() (in module deal), 55
seed (deal.cases attribute), 57
settings (deal.cases attribute), 57
SilentContractError, 59
StubCommand() (in module deal._cli._stub), 48

T
TestCase (class in deal), 57
TestCommand() (in module deal._cli._test), 48

64 Index

	
	Python Module Index
	Index

